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Abstract

Simulations of decaying magnetohydrodynamic (MHD) turbulence are performed with a
fluid and a kinetic code. The initial condition is an ensemble of long-wavelength, counter-
propagating, shear-Alfvén waves, which interact and rapidly generate strong MHD turbulence.
The total energy is conserved and the rate of turbulent energy decay is very similar in both
codes, although the fluid code has numerical dissipation whereas the kinetic code has kinetic
dissipation. The inertial range power spectrum index is similar in both the codes. The fluid
code shows a perpendicular wavenumber spectral slope of k−1.3

⊥ . The kinetic code shows a
spectral slope of k−1.5

⊥ for smaller simulation domain, and k−1.3
⊥ for larger domain. We estimate

that collisionless damping mechanisms in the kinetic code can account for the dissipation of
the observed nonlinear energy cascade. Current sheets are geometrically characterized. Their
lengths and widths are in good agreement between the two codes. The length scales linearly
with the driving scale of the turbulence. In the fluid code, their thickness is determined by the
grid resolution as there is no explicit diffusivity. In the kinetic code, their thickness is very close
to the skin-depth, irrespective of the grid resolution. This work shows that kinetic codes can
reproduce the MHD inertial range dynamics at large scales, while at the same time capturing
important kinetic physics at small scales.

∗kirit.makwana@gmx.com
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I. Introduction

Magnetohydrodynamic (MHD) turbulence describes the phenomenon of turbulence in con-

ducting fluids [1]. It is observed in a variety of systems, ranging from laboratory plasmas [2] to

space and astrophysical plasmas [3]. Similar to hydrodynamic turbulence [4], three dimensional

MHD turbulence is characterized by an inertial range where energy is forward cascaded from larger

to smaller scales conservatively [5]. The inertial range spectrum of incompressible, 3-dimensional

MHD turbulence is well-studied and several theories have been proposed to explain it. Goldreich

and Sridhar [6] introduced the concept of critical balance between linear wave period and nonlinear

interaction timescale, leading to an anisotropic cascade of energy that is faster in the perpendicular

scales compared to parallel scales.

As energy cascades to smaller scales, at small enough scales it has to be dissipated into

heat. Dissipation of the MHD turbulence cascade is an important source of heat in space and

astrophysical plasmas. It has been cited to explain heating of the solar corona and solar wind [7],

as well as a possible source of heat in the intracluster medium to balance radiative cooling [8].

However, dissipation of MHD turbulence is still not well-understood. In hydrodynamics, dissipation

occurs at small length scales due to viscosity which can be understood from molecular theory.

However, many astrophysical plasmas are weakly collisional at small scales. Collisionless damping

mechanisms resulting from wave-particle interactions have been proposed to explain dissipation at

such scales [9]. MHD is a fluid model for plasmas which is strictly applicable only at length scales

larger than the ion gyro-radius, ρi =
√
kBmiTi/(qiB) [10]. Here kB is the Boltzmann constant, mi

is the ion mass, Ti is the ion temperature, qi is the ion charge, and B is the magnetic field strength.

Thus, some theories propose that the energy cascade turns into a kinetic-Alfven wave cascade at

scales smaller than the ion gyro-radius [11]. Another possibility would be conversion to a Whistler

wave cascade [12]. In either case, we expect the energy to be dissipated away into heat at the

electron gyro-radius scale.

Another suggested mechanism for dissipation is nonlinear processes in thin current sheets [13].

In numerical simulations of MHD turbulence with a mean field, one often sees formation of current

2
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sheet structures. Boldyrev [14] has introduced the concept of dynamic alignment, in which the

velocity and magnetic fluctuations in the plane perpendicular to the mean field become increasingly

aligned at smaller scales, producing sheet-like structures rather than filaments. Such structures can

dissipate energy intermittently [15]. Some resistive MHD simulations have shown strong current

sheets that occupy 1% of the simulation volume but account for 25% of the resistive dissipation [16].

However, the thickness of these current sheets depends on the resistivity supplied by the user, or on

the grid spacing if sufficient resistivity is not provided. In either case, the dissipation calculated in

such current sheets is not based on real micro-physics and hence the use of kinetic codes is essential

to analyze dissipation in such sheets.

Recently particle-in-cell and gyro-kinetic codes have started probing the dissipation range

of the MHD cascade. Such simulations also show the formation of electron-length-scale current

sheets [17, 18, 19]. However, it has been difficult to produce the entire spectrum of energy cascade

in these simulations, starting from the inertial range going up to the dissipative range. In such a

case, an antenna can be used to model the injection of energy at the scale of the simulation domain,

mimicking the cascade of energy down from larger scales [20].

In this work, we simulate the entire spectrum of MHD turbulence, from inertial to dissipative

range, using a particle-in-cell (PIC) kinetic code. This allows us to describe the energy input

from large scales without requiring an artificial setup. We also run the same simulations with a

compressible MHD code and compare the results between the two codes at all scales. This gives

a check on the validity of PIC codes in the continuum limit at large scales. Comparison at small

scales provides us with clues about where kinetic physics plays an important role. We focus on

large scale dynamics and current sheets in this study. In Sec. II we describe the setup of the

numerical simulations. Energy is injected at large scales by means of strongly interacting shear-

Alfvén waves at the initial time. The turbulence is then allowed to develop and decay, as there

is no continuous forcing. In Sec. III we report the results of global energy dynamics and energy

spectra. The turbulent energy decay rates are remarkably similar in both codes, despite the very

different dissipation mechanisms present in them. We also find that the spectra match very well

3
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in the inertial range, especially when larger simulation domains are utilized in the PIC code. The

dissipative range spectra show important differences between the PIC and MHD simulations. In

Sec. IV we describe an analysis of the geometrical characteristics of current sheets. They show

similar lengths and widths in the two codes which scale with the outer (driving) scale of turbulence.

All these observations validate that the PIC code can reproduce MHD dynamics at large scales.

However, at small scales we see critical differences. The thickness of current sheets is determined

by the grid resolution in MHD, due to the absence of any explicit diffusivity. However in the PIC

code, current sheets always show thickness close to the skin-depth, thus capturing the relevant

kinetic physics. We end with discussion in Sec. V.

II. Setup of numerical simulations

We simulate decaying turbulence with the use of two codes - the MHD code PLUTO [21], and

the particle-in-cell code VPIC [22]. PLUTO solves the ideal MHD equations with a finite-volume

technique. We do not specify any explicit diffusivity, thereby relying solely on the numerical

diffusion of the finite grid spacing. In the presence of a mean magnetic field B0, we can define an

Alfven velocity (vA = B0/
√
µ0ρ). Here µ0 is the permeability of free space and ρ is the plasma mass

density. The ideal MHD equations do not have a natural length scale and can be normalized to

an arbitrary length scale L, thereby also specifying a time scale. The only parameter that remains

in the dimensionless MHD equations is the plasma beta, β = ptot/(B
2
0/2µ0), where ptot is the total

pressure. We choose β = 0.33. The adiabatic equation of state is used.

VPIC integrates the coupled Maxwell-Boltzmann equations [22]. We consider a pair plasma

for the sake of computational ease. Since VPIC is a particle-in-cell code, we have to specify an initial

velocity distribution function. We give the particles a Maxwellian distribution with a thermal speed

vth =
√

kBTi/mi =
√

kBTe/me = 0.08c (c is the speed of light). There are 350 particles of each

species in every cell initially. The plasma beta is matched between the two codes by selecting the

ratio of electron plasma frequency, ωpe, to the electron cyclotron frequency, ωce, as ωpe/ωce = 3.6.

The electron cyclotron frequency is defined as ωce = |qeB0/me| and the electron plasma frequency

is ωpe =
√

n0e2/(ϵ0me), where n0 is the electron number density and ϵ0 is the permittivity of free

4



 Reuse of AIP Publishing content is subject to the terms at: https://publishing.aip.org/authors/rights-and-permissions. Downloaded to  IP:  192.12.184.7 On: Thu, 14 Jul 2016

22:07:26

space. The ratios vth/c and ωpe/ωce are the only two parameters relevant in the dimensionless form

of the kinetic equations. The above choice of these two parameters gives β = 0.33, ensuring that

both codes are simulating the same physical plasma.

In both codes the velocity is normalized by speed of light. In PLUTO, the magnetic field is

normalized by c
√
4πρ0, where ρ0 is the mean density in C.G.S. units. In VPIC the magnetic field is

normalized by ωpeme/e, where all quantities are in S.I. units. However, for all the energy quantities

plotted in this paper, the energies calculated in both codes are converted to S.I. units for direct

comparison. In order to do this, the mean magnetic field is given the value B0 = 10G. This then

gives the S.I. value for all the other quantities using the dimensionless parameters specified.

The simulation domain is a three-dimensional, rectangular box with periodic boundary condi-

tions. The box is four times longer along the z direction, parallel to the background magnetic field,

with the knowledge that current sheets will be elongated along the background field. The initial

condition is specified by an ensemble of shear-Alfven waves superimposed on the plasma. In other

words, the initial perturbations of the magnetic and velocity fields are of the form of shear-Alfven

wave eigenvectors, as shown below,

δb =
∑
j,l

a0B0 cos(jkzz + lkyy + ϕj,l)x̂+
∑
m,n

a0B0 cos(mkzz + nkxx+ ϕm,n)ŷ, (1)

δv = −
∑
j,l

sgn(j)a0vA cos(jkzz + lkyy + ϕj,l)x̂−
∑
m,n

sgn(m)a0vA cos(mkzz + nkxx+ ϕm,n)ŷ. (2)

Each (j, l) or (m,n) combination specifies a shear-Alfven wave. The wavenumbers take the values

(j, l) = (1, 1); (1, 2); (−2, 3) and (m,n) = (−1, 1); (−1,−2); (2,−3) with kx,y,z = 2π/Lx,y,z. The

amplitude of the perturbations is a0 = 0.18. When the sgn(j) or sgn(m) is negative, then we have

a shear Alfven wave moving in positive-z direction, and vice-versa. We see that there are 3 waves

moving in positive z direction, and 3 moving in the negative z direction, with equal energy in both

directions, implying balanced turbulence. The interaction of these waves quickly generates MHD

turbulence. In VPIC, velocity perturbations are incorporated by defining the initial Maxwellian

distribution functions to be centered around the space-dependent mean velocity perturbations.

Since we are considering a pair plasma, the mean velocity of each species contributes equally to

5
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the fluid velocity. This mean velocity is derived from the velocity perturbations in Eq. 2, plus

a component for the current densities needed to produce the perturbed magnetic fields in Eq. 1.

In addition, electric fields have to be provided in VPIC, consistent with the ideal MHD equation

E = −v ×B ≈ −δv ×B0 (here we ignore the weaker δv × δb term).

The initial r.m.s. amplitude of the perpendicular magnetic field perturbations is b⊥,rms/B0 =

0.31. Similarly the initial r.m.s. amplitude of the velocity perturbations is the same for shear-Alfven

waves, vrms/vA = 0.31, which is the initial r.m.s. Alfvenic Mach number (MA). The initial r.m.s.

sound Mach number is M = vrms/cs = 0.59. The perpendicular wavenumber of the Alfven-wave

ensemble is roughly 4 times larger than the parallel wavenumbers, due to the box aspect ratio of

1:4. This satisfies the condition of critical balance, k⊥v⊥ ∼ k∥vA, at the outer scales which helps

in quickly setting up a strong turbulence cascade.

Different simulations are carried out keeping the same initial conditions, but changing the

box size and resolution. We define the resolution as the number of cells per unit length, so the

resolution in x-direction would be Nx/Lx, where Nx is the number of cells in x-direction and Lx

is the corresponding box length. Table 1 shows the settings for the different runs performed. We

take the same number of cells (Nx = Ny = Nz) in all the three directions. This is possible because

of the nature of the anisotropic cascade, which transfers energy to smaller scales preferentially in

the perpendicular direction, thus allowing us to get away with 1/4th the resolution in z. We also

find that the current sheets are elongated along the z direction and do not require as much parallel

resolution as in the perpendicular directions. We have verified that the results do not change

with higher resolution in z. Run I serves as the base case. Run 0 is a test case with the lowest

resolution. Run II has double the resolution of run I. Run III has same resolution as run I, but

double the box size. Run IV has the same resolution as run 0, but the box is 4 times larger than

run I. The box length and resolutions have been chosen such that there are at least two decades

between the initially-driven scales and kinetic scales for an inertial range to form, but the kinetic

scales are also resolved at the same time. Changing resolution and box sizes will tell us about how

the outer and inner scales affect turbulence properties. It should be pointed out that runs II, III,

6
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Run Lx(di) Ly(di) Lz(di) Nx,y,z

0 120 120 480 288

I 120 120 480 576

II 120 120 480 1152

III 240 240 960 1152

IV 480 480 1920 1152

Table 1: Settings for simulations. The box lengths are specified in terms of ion-skin-depth, di.
Nx,y,z specifies the number of cells in each direction. There are equal number of cells in each
direction.

and IV are physically the same in ideal MHD, because changing box size just involves changing the

length normalization factor in ideal MHD. However, in the kinetic formulation length has a physical

meaning and hence runs II, III, and IV are physically different runs in VPIC. All the simulations

are run up to 3 Alfven crossing times (τA = Lz/vA), with data being output every ∆t = 0.2τA. We

first look at the energetics and turbulent spectra of these simulations.

III. Energy dynamics and turbulent spectra

Let us first look at the energetics of the system. Fig. 1 plots the various energy components

of the plasma in simulation runs I, II, and III, of both the codes. In the initial state, magnetic and

kinetic perturbation energies are equal, because we have only shear Alfven waves, and add up to

19.4% of the background magnetic field energy. As time advances, the shear-Alfven waves interact,

produce turbulence, which forward cascades the perturbation energy to small scales, and ultimately

dissipates into heat. We see this clearly in Fig. 1. The total energy is conserved in PLUTO code

to better than 0.5% error, and in VPIC energy conservation is better than 3% error for these runs.

Thus, the internal energy correspondingly increases as the magnetic and kinetic energy decay. PIC

codes have a finite-grid instability which results in numerical heating of the plasma leading to an

increase in internal energy. Typically this instability kicks in when the cell size (∆x) becomes larger

than 3λDe, where λDe is the electron Debye length. This is true for all our runs in the parallel

direction and for runs 0 and IV in the perpendicular direction. In the appendix we study how much

heating we are getting due to this instability and find that it is very weak and should not change

our results in any significant way.

7
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The internal energy in PLUTO is given by
∫
d3x[p/(γ−1)], with γ = 5/3. The internal energy

in VPIC is defined as the total kinetic energy of all particles minus the kinetic energy calculated

from the fluid velocity obtained by averaging the particle velocities in each cell. These two internal

energies match very nicely as seen in Fig. 1. The energy in the parallel field along z direction

remains constant. This energy includes, for the most part, the mean field B0, plus a tiny fraction

(0.3% of total energy) from parallel magnetic fluctuations which develop with the turbulence. In

Fig. 1(a) we see that the perpendicular magnetic field energy in MHD behaves differently compared

to VPIC during the first step from t/τA = 0 to t/τA = 0.2. We see a slight increase in the magnetic

energy during this time for MHD. This behavior is seen in the VPIC simulation also, but for a

time shorter than ∆t/τA = 0.2 before the magnetic energy starts decreasing, so it is not visible in

the figure. This might happen due to small-scale magnetic fields being wound up by the velocity

perturbations as the turbulence develops. These fluctuations could be damped faster in VPIC due

to kinetic damping, whereas they would be undamped in MHD. Below we will see indications of

this occurring. Correspondingly, the internal energy in the MHD code increases slightly slower

than VPIC during this time. After t/τA = 0.2, both codes show remarkably similar behavior, with

almost the same energy decay rates in all the three simulation runs shown in Figs. 1(b), (c), and

(d). Overall the differences between the two codes are less than 1% of the total energy, which is

within the limits of error in energy conservation for these simulations, and hence the decay rates

are the same within error bars. If we fit a power law to the energy decay plot, we find a decay rate

very close to E ∼ t−1, where E is the sum of turbulent magnetic and kinetic energy.

The decay rates are the same despite the fact that dissipations mechanisms are very different

in the two codes. We depend solely on numerical diffusivity for dissipation in MHD, whereas the

kinetic code has access to all kinetic damping mechanisms. One possible reason for this could be

the invariance of energy transfer rate across the inertial range of turbulence. In this picture, the

rate of energy transfer across each scale in the inertial range is determined by the nonlinearity

and is an invariant. There is a possibility of non-local interactions in MHD turbulence where

energy is transferred directly from large to small scales without passing through each intermediate

8
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Figure 1: (color online) Energy evolution for simulation runs I, II, and III. (a) shows the perpen-
dicular magnetic field energy (in blue) and kinetic energy (in red), internal energy (in green), and
parallel magnetic field energy (yellow) for run I. The solid lines are from PLUTO simulations and
dashed lines are from VPIC. The energy axis is normalized by 104, which also applies to figures
(b) and (c). The internal energy and the energy in parallel magnetic field is multiplied by 0.1 for
ease of viewing. (b) shows the total perturbation energy for PLUTO (in blue) and VPIC (in red)
for run I. Internal and background magnetic field energies are shown as in (a). The legend for (b)
is followed in (c) and (d). (c) shows energy terms in run II. (d) shows energy terms for run III, its
energy axis is normalized by 105.

scale [23]. However, this non-local coupling should weaken as the dynamical range of our simulations

increases [24], giving similar local cascade rates in both the codes. This energy is dissipated at the

small scales at the same rate, with the small scale structures adjusting themselves to provide the

needed rate of dissipation. As a result, the small scale physics does not impact the energy decay

rate. To check this we next look at the energy spectrum of this turbulence.

Fig. 2 shows the perpendicular wavenumber power spectra for the total energy at different

times in run II for both codes. The total energy spectrum is defined as (|b̂(k⊥)|2 + |v̂(k⊥)|2)/2,

where b̂(k⊥) is the Fourier transform of the magnetic field B (in normalized units) in the per-

9
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pendicular direction to the mean field, averaged over the parallel direction. Similarly v̂(k⊥) is the

Fourier transform in perpendicular direction, averaged over parallel direction, of the field
√
ρv (in

normalized units), with the
√
ρ (ρ is the density) factor coming in due to the compressible nature

of our simulations. The fluid velocity v is a dependent variable in MHD, whereas in VPIC it is

derived by averaging the particle velocities in each cell. As this is a decaying turbulence, the spec-
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Ê
(k

⟂
)
∗k

1
.3 ⟂

(a)

t=0.4τA

t=1.0τA

t=1.6τA

t=2.4τA

10-1 100

k⟂di

10-3

10-2

10-1

Ê
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t=1.6τA

t=2.4τA

Figure 2: (color online) The total energy spectrum normalized by the total fluctuation energy at
different time steps in run II. (a) is for the PLUTO run and (b) is for the VPIC run. The spectrum
is also multiplied by k1.3⊥ .

trum changes as a function of time, with the total energy decreasing monotonically. To overcome

this, in Fig. 2 we have normalized the spectrum by the total fluctuation energy at each time step,

thus it shows the same energy level at each time step. Initially, the smallest 3 perpendicular wave-

numbers are populated (as specified in Eqs. 1-2) and the higher wave numbers have no energy.

10
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As the simulation proceeds, higher wave numbers get populated rapidly (within t = 0.2τA). By

t = 0.4τA, the spectra appear to develop a power law behavior in both codes. However, there are

some important differences between the two codes. As we go further in time, the shape of the

spectrum, including its power law slope, remains very similar in Fig. 2(a) which is for MHD. In fact

the inertial range gets extended into low-k wavenumbers as time goes on. For MHD, the inertial

range behavior extends from k⊥di ≈ 0.2 to k⊥di ≈ 1.0 and we see a slope of k−1.3
⊥ . On the other

hand for VPIC in Fig. 2(b), the extent of inertial range is narrower from k⊥di ≈ 0.3 to k⊥di ≈ 0.8

at t = 0.4τA. Its slope is also steeper compared to the MHD run. Moreover, the shape of the VPIC

spectrum changes significantly as time goes on. The extent of the power law behavior decreases

drastically by t = 2.4τA, and the entire spectrum shifts to the left. This indicates that dissipation

is active even at low wavenumbers (k⊥di < 1.0) in VPIC, which is not the case in MHD. This

is a sign of kinetic damping mechanisms which are active at all wavenumbers, but their damping

rate increases with k⊥. Although damping at low k⊥ is weak, as time progresses it starts to show

an effect, which is what we are presumably seeing in Fig. 2(b). Below, we will further investigate

whether kinetic damping can explain the dissipation in VPIC.

The time evolving spectrum in Fig. 2 is time-averaged by compensating for the decay in

energy at every time step by a multiplying factor which is the ratio of average energy in the range

0.2 ≤ k⊥di ≤ 0.8 (0.1 ≤ k⊥di ≤ 0.4 for run IV) at t = 1.0τA to the average energy in the same range

at the given time step. The averaging is performed over 11 time-slices from t = 1τA to t = 3τA.

This averaged spectrum is shown in Fig. 3 for the different simulations. Despite the complication

introduced by decaying turbulence and the limited time-averaging, we get convergent power law

behavior. Figs. 3(a), (b), and (c) show spectra from MHD runs 0, I, and II, respectively which have

resolution of 2883, 5763, 11523 respectively, with the box size normalized to (120di, 120di, 480di).

We see that the total energy spectrum is well-converged to a slope of k−1.3
⊥ . The magnetic energy

is slightly larger than the kinetic energy. The MHD spectra for runs III and IV are not shown as

they show very similar spectra to run II. This is because they share the same number of grid cells,

only differ in box size. In ideal MHD there is no natural length scale, and hence the box size is just
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Figure 3: (color online) (a) MHD Run 0, (b) MHD Run I, (c) MHD Run II, (d) VPIC Run III, (e)
VPIC Run 0, (f) VPIC Run I, (g) VPIC Run II, and (h) VPIC run IV. Solid blue line is the total
energy (magnetic+kinetic) spectrum, dashed green line is the magnetic energy spectrum, and red
dash-dotted line is the kinetic energy spectrum. All spectra are multiplied by a factor of k1.3⊥ , with
the dotted lines showing the reference slopes of k−1.1

⊥ , k−1.3
⊥ , and k−1.5

⊥ as labelled in fig (a).

a normalization constant chosen arbitrarily by the user. Runs III and IV are the same computation

as run II, except that all length quantities in them get multiplied by factors of 2 and 4 respectively.

The spectra from VPIC simulations are shown in Figs. 3 (e), (f), (g), (d), and (h) for runs

0, I, II, III, and IV respectively. Figs 3(e) and (f) show a steeper total energy spectrum of k−1.5
⊥ .

These runs are with lower resolution and the smallest box size. Compared to MHD spectra in

Figs. 3(a) and (b) where the power law turns over at around k⊥di ≈ 0.6, here it turns over slightly

earlier at k⊥di ≈ 0.4, giving a shorter inertial range. Like in MHD, the magnetic energy is slightly

larger than kinetic energy for k⊥di . 1.0, but this trend reverses for k⊥di & 1.0, unlike in MHD.

This indicates a kinetic damping mechanism acting to suppress the magnetic field fluctuations at

large wavenumber. This can be the reason for not observing a magnetic energy spike in VPIC

at t/τA = 0.2 in Fig. 1(a). Fig. 3(g) is the highest resolution run with 11523 cells on a box

size (120di, 120di, 480di). It also shows a spectrum close to k−1.5
⊥ , showing that the spectrum is

converged for this box size, even at the resolution of run 0. Fig. 3(d) is for run III in which the

box lengths are increased by a factor of two to (240di, 240di, 960di), which unlike in MHD, means

a physical change for VPIC. Now we see the total spectrum is much closer to the MHD result of
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k−1.3
⊥ . For run IV, shown in Fig. 3(h), the box size is again doubled to (480di, 480di, 1920di), thus

giving a resolution equivalent to that of run 0. Here the spectrum is completely converged with

the MHD result of k−1.3
⊥ . So we recover the fluid result when a larger box size is used. Conversely,

the MHD simulations correctly describe the dynamics of a plasma at large scales.

This observed slope of k−1.3
⊥ is shallower compared to strong turbulence results from incom-

pressible MHD turbulence studies [25]. This raises the question whether the numerical simulations

are spoilt in some manner. However, the discrepancy could be due to the decaying nature of this

turbulence. The slope of k−1.3
⊥ is close to k

−4/3
⊥ . This slope is consistently observed in all our

MHD simulations irrespective of the resolution, showing that it is converged. In VPIC we observe

a steeper slope of k
−3/2
⊥ in our smaller box (runs 0, I, II), but again it is converged w.r.t. resolution.

The slope in VPIC also becomes k
−4/3
⊥ when we take the two larger boxes. The fact that the slope

in a PIC simulation, which is numerically very different from a MHD simulation, converges to the

MHD value in the large box limit gives us confidence that the MHD result is meaningful. Secondly,

other simulations of decaying turbulence have also reported this slope. In Ref. [26] a decaying

magnetized Kelvin-Helmholtz instability is simulated. Although it is a different setup, the 1-D

wavenumber spectrum was observed to be k−4/3. Lastly, we have performed numerical simulations

of forced MHD turbulence with the same MHD code in the same setup, with only the addition

of a forcing term. In that case, the perpendicular wavenumber spectrum comes out to be k
−3/2
⊥ ,

which is in accordance with the result of forced MHD turbulence in Ref. [25]. All these observations

give us confidence that the spectral slope result is not due to spoilt numerical simulations. The

phenomenological explanation of why one is getting this slope is not understood and should be

explored in future work.

We have seen almost the same rate of energy decay in both PIC and MHD codes. A natural

explanation for this is that the small scales adjust themselves to dissipate and balance whatever

energy is cascaded down from larger scales. This also seems likely because we see very similar

inertial range spectra in both codes. But how do the small scales adjust themselves to do the

required dissipation? In MHD, the numerical grid is responsible for this dissipation, either due
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to shocks or numerical reconnection. In VPIC, collisionless damping can play a role. We will

investigate detailed dissipation mechanisms in future work, as this work is more concerned with

characterizing the larger scale dynamics. However, we can roughly estimate if collisionless damping

in VPIC can explain the observed dissipation rate. Ref. [27] calculated linear, collisionless damping

rates for pair-plasmas. We use these damping rates to estimate kinetic damping in our VPIC

simulations. We separate the total energy into two parts, a low-k part (E<) and a high-k part

(E>), defined as,

E< =

∫ k0

0
E(k⊥)dk⊥, (3)

E> =

∫ ∞

k0

E(k⊥)dk⊥. (4)

We assume kinetic damping is active at wavenumbers larger than k0. The rate at which energy

enters this high-k region is estimated by taking the time derivative of E<, assuming that all this

energy cascades forward to k⊥ > k0. Thus, this quantity is defined as,

dE<

dt
=

E<(t2)− E<(t1)

t2 − t1
, (5)

where t1 and t2 are two neighboring time steps. This quantity gives an upper limit on the nonlinear

energy cascade rate, because it assumes that all this energy goes into the k⊥ > k0 region. This has

to be balanced by some dissipation mechanism in the high-k region. This is estimated as follows,

γE> =

∫ ∞

k0

γ(k⊥)[(E(k⊥, t1) + E(k⊥, t2))/2]dk⊥, (6)

where γ(k⊥) = γ(k0, k∥0)(k⊥/k0)
α is a damping rate. Ideally, the accurate way to calculate the

energy dissipation by collisionless damping would be to use the exact value of γ(k∥, k⊥) obtained

from a linear Vlasov solver. This will be a topic of future study, however here we are trying to

obtain a crude estimate of collisionless damping, and hence we use this simple function for γ. All

the wavenumber variables are implicitly taken to be normalized with skin-depth (di = de). The

constant γ(k0, k∥0) is taken from Eq. (2) of Ref. [27], which is reproduced here,

γ(k0, k∥0)

|Ωe|
= −A(βe)k

2
0k∥0. (7)
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Table 2: Table of various parameters and the estimates of damping rate (|γE>|) and nonlinear
energy cascade rate (|dE</dt|)

t1/τA t2/τA k0 k∥0 α |dE</dt| |γE>|
0.4 0.6 1.0 0.1 0.0 1397 215

0.4 0.6 1.0 0.2 1.0 1397 695

0.6 0.8 0.8 0.1 1.5 943 389

0.6 0.8 1.0 0.2 1.3 987 635

0.8 1.0 1.0 0.1 1.0 629 177

0.8 1.0 0.7 0.2 0.5 580 260

0.8 1.0 0.8 0.2 1.5 600 532

1.0 1.2 1.0 0.1 0.0 325 75

1.0 1.2 0.9 0.2 1.0 318 257

1.0 1.2 0.8 0.2 1.5 309 382

This expression is strictly valid only at |k0|, |k∥0| ≪ 1.0. However, looking at Fig. 3 in Ref. [27],

it gives a value very close to the correct value of γ/|Ωe| ≈ 0.01 even for k0 = 1.0, k∥0 = 0.5. We

will estimate γ(k0, k∥0) at similar values. The exponent α mimics the growth of the damping rate

with k⊥ at varying rates. When we take α = 0, we get the lowest bound for collisionless damping.

A(βe) is taken to be 0.05 at βe = 0.15 from Fig. 2 of Ref. [27].

Table 2 lists these estimates for different values of t1, t2, k0, k∥0, and α from the spectra of

VPIC simulation run I and the linear damping estimates. The |dE</dt| column gives the estimate

for nonlinear energy cascade crossing k0, while the |γE>| column gives the kinetic damping estimate

for k⊥ > k0. If we choose k0 = 0.8, k∥ = 0.2 and α = 1.5 (the last row) we can explain all the

dissipation by kinetic damping, for later times. At earlier times, the spectrum is not entirely filled

in and so the kinetic damping need not balance the nonlinear transfer. We do see dissipation set

in by k⊥di = 0.8 in Fig. 3, so k0 = 0.8 is a reasonable choice. We also see significant power beyond

k∥di = 0.2 in our simulations, so choice of k∥ is also reasonable. The damping depends strongly

on α, which is arbitrary. When α = 0, we get the lowest estimate of collisionless damping, and

we see from the table that it is not sufficient to dissipate the energy being cascaded. However, the

damping rate increases with α, and we see that even at α = 1.0 the collisionless damping becomes

a significant fraction of the energy cascade. Also, we have taken a single k∥, but the damping

rate also depends strongly on k∥. From this we can say that kinetic damping has the capability to
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explain a large fraction of the total dissipation. To accurately calculate kinetic damping, we need

the exact dependence of γ on k⊥ and k∥ which requires a linear Vlasov solver. Nevertheless, these

rough estimates show that kinetic damping can possibly be a large part of the dissipation in our

VPIC simulations.

This analysis gives us confidence that the MHD result is well-converged and the kinetic code

is able to reproduce the MHD result when a larger box size is taken. It shows that the gap between

fluid and kinetic descriptions of plasmas is bridged with the use of a state-of-the-art particle-in-

cell code coupled with supercomputing power. The steeper spectrum seen for smaller box sizes in

VPIC could be due to the limited separation between the outer and inner scales, thus not giving

enough room for the inertial range to fully develop. In Fig. 3 we see that the break in spectrum for

MHD runs 0, I, and II shifts to higher wave-numbers as resolution increases, but the spectral break

in corresponding VPIC runs remains fixed. This shows that the dissipative scale in ideal MHD

depends on the grid resolution whereas in VPIC it is a physically meaningful length scale. Now

that MHD inertial range behavior has been established in VPIC, we next investigate the behavior

of thin current sheets.

IV. Characterization of current sheets

Several numerical studies have shown the spontaneous formation of thin current sheets in

MHD turbulence. Fig. 4 shows the current density on the surface of the three dimensional simulation

box at t/τA = 0.8 of VPIC run 0. We see typical current sheet structures forming. There are three

distinct dimensions of the sheets. First is the longest dimension along the background magnetic

field, we call this the length. Then there is the intermediate dimension of width, which is the largest

extent of the current sheet in the plane perpendicular to the length. The smallest dimension of

the current sheet is the thickness, which is approximately perpendicular to the length and width.

These three dimensions are illustrated in Fig. 4.

Let us first look at the global distribution of current density in our simulations. In Fig. 5(c)

we plot the volume fraction occupied by current densities above a threshold jthr. Starting from

the entire volume fraction of 1.0 for jthr/jrms = 0, the distribution rapidly drops, with current
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Figure 4: (color online) Surface plot of current density in VPIC run 0 at t/τA = 0.8. The three
characteristic dimensions of a current sheet are illustrated.

density higher than jrms occupying as little as 20% of the volume. This indicates that current

density is concentrated in small structures. Current densities higher than 4jrms occupy roughly

0.5% of the volume in the MHD simulations and roughly 0.2% volume in kinetic simulations. There

are different proxies used to calculate energy dissipation in current density structures. In resistive

MHD simulations, the energy density dissipation rate is given by ηj2. Although our simulations are

not of resistive MHD, we can assume a dissipation rate proportional to j2 and calculate its fraction

at various current density thresholds, which is what is shown in Fig. 5(a). The distributions are

very close to exponential till jthr/jrms = 8.0. This matches results from resistive MHD simulations

(see Fig. 4 in Ref. [28]). In fact, the shape of the volume fraction in Fig. 5(c) also matches

results from Ref. [28]. For the MHD simulations, at jthr/jrms = 4.0, we see a j2 dissipation

fraction of around 15%, and we recall that this is in a volume fraction of 0.5%. Similarly, VPIC

simulations show a j2 dissipation fraction ranging from 3% to 6% at the same threshold. This

shows that kinetic simulations do not dissipate as strongly as MHD simulations in regions of higher

current density. A similar observation is made in Ref. [19] where it is stated that due to “the

limited number of dissipation channels available in fluid simulations the energy content of small-

scale current sheets is likely to be overestimated”. This same result is borne out by Fig. 5(b) which

plots the fraction of dissipation, now calculated using |E · J|. The PIC code directly supplies us
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Figure 5: (color online) Fraction of (a) |J|2, (b) |E ·J|, and (c) volume, on the y axis, as a function
of current density above jthr. The different curves are for the different simulations shown in the
legend. These distributions are averaged for time steps between t/τA = 1.0 to t/τA = 3.0 in VPIC
cases (except for VPIC case IV which goes only up to t/τA = 2.6). The MHD runs I and II are
averaged at three time samples: t/τA = 1.0, 2.0, 3.0.

with E, whereas for the ideal MHD code, we use E = −v × B. Above jthr/jrms = 4.0, roughly

2% of the |E · J| dissipation takes place in MHD codes, and 0.3% of |E · J| dissipation occurs in

PIC simulations. So this proxy shows even weaker concentration of dissipation in strong current

sheets. One general feature common between the three Figs. 5(a), (b), and (c) is that changing

the resolution of VPIC simulations (going from run I to run II), we do not observe any significant

change in the distributions up to large jthr/jrms. On the other hand, MHD runs I and II show a

difference even at low jthr/jrms > 2.0. This indicates that dissipation in current sheets is sensitive

to resolution in MHD but not in VPIC. On the other hand, changing the box size does affect the
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distribution of j2 dissipation in VPIC. To understand this behavior, we take a closer look at the

morphology of current sheets in our simulations.

We can characterize the morphological properties of the current sheets using the program

developed in Refs. [16], [28]. The algorithm of Ref. [16] identifies current sheets by finding peaks

in the current density and identifying the surrounding volume where the current density is higher

than a certain threshold. We take the threshold to be jthr/jrms = 4.0. It then finds the three major

dimensions of the sheet-like structures as shown in Fig. 4. There are two methods to characterize

these dimensions, the more intuitively direct Euclidean method, and the more mathematically

rigorous Minkowski method. Both these methods are described in Ref. [28]. We use the Euclidean

method in this work. In order to correctly identify contours of current density in VPIC, we have

to smoothe the particle noise which creates irregular boundaries of the sheet structure. This is

done by inline time averaging within the code. The data is averaged over an interval of ∆t = 0.2τci

during the simulation for runs 0, I, III, and IV and ∆t = 0.1τci for run II, where τci = 2π/ωci. This

averaging procedure significantly reduces the particle noise, giving smooth boundaries of current

sheets. This data has been used for all the analysis in this work. For MHD the current density is

calculated by taking ∇×B. In VPIC we can also obtain the current density directly from particle

velocity. Both the methods agree very well in VPIC, and we use ∇×B to calculate current density

in both codes, for consistency.

Fig. 6 plots an intensity weighted distribution function of the lengths (the longest dimension)

of current sheets. The distribution function is cE(l)l/∆l plotted versus l, where E(l) is the total

intensity in current sheets of length l. The intensity is the j2 dissipation rate in the current sheet,

defined as
∫
l d

3xj2, where the integral is over the volume of current sheets with length between

l − (∆l/2) and l + (∆l/2). The intensity E(l) is multiplied by l because this makes the maximum

correspond to the length scale where most of the overall j2 dissipation is organized. The constant

c is defined to normalize the distribution function to unity,
∑

l(cE(l)l/∆l) = 1. The width of the

bins ∆l is proportional to length l in order to make uniform bins on a log scale. This distribution

is averaged over the 11 time snap shots from t = 1.0τA to t = 3.0τA for each simulation (except for
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run IV of VPIC, in which the average runs only up to t = 2.6τA).
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Figure 6: (color online) Length distributions in the different simulation runs. The x-axis is nor-
malized to di. (a) is for MHD runs, (b) is for VPIC runs.

In Fig. 6(a) we see the length distributions for MHD runs 0, I, II, and III. The maximum

intensity occurs in current sheets with lengths starting from 100di and going up to the box length

in z, with the distribution almost flat between these two values. Runs 0, I and II show very similar

distributions, showing that the lengths do not depend on the resolution. Run III shows a length

distribution which looks very similar to run II, except it is shifted to the right by a factor of two.

This reflects the fact that run III in MHD is the same as run II, only difference being that it’s

length normalization is a factor of two larger than the normalization of run II. These results are
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seen more clearly in Fig. 6(b) which shows the length distributions for VPIC runs. We see that

the distributions for runs 0, I, and II are very similar to each other, even at small length scales.

The distribution reaches a peak at around 100di and extends up to l ≈ 300di, not going up to the

entire box length in z. Below l ≈ 20di, we see the distributions flatten out for runs 0 and IV. This

is due to the PIC noise, as we see this flattening most prominently for these two runs which have

the lowest resolution, and least prominently for run II which has the highest resolution. As we

double the box size in run III, we find the distribution shifting to the right with the most energetic

sheets having a length between 200di and 600di. Similarly, doubling the box size further in run

IV, the sheets go up to length 1800di. However, the distribution drops off at l ∼ 1200di, which is

double of the maximum length observed in Run III of 600di. This is consistent with the doubling of

maximum length from 300di to 600di in going from Run II to Run III. The spike at 1800di is due to

percolating structures, i.e., structures that extend throughout the simulation domain, which would

require a higher threshold to get a cleaner scaling. It should be noted that skin-depth is a natural

normalization in kinetic codes, and hence changing box size is not just a change in normalization.

The driving wavenumbers of turbulence defined in Eqs. 1 & 2 are defined with respect to the box

length, and so changing box size implies changing the driving scale of turbulence. The results

from both codes clearly show that the lengths of current sheets scale linearly with the driving

scale of turbulence. It is expected that there should be a limit on the maximum length of current

sheets, beyond which they would break-up due to some instability, like the current sheet sausage

instability [29] or kink instability [30]. However, it appears that neither our ideal MHD nor VPIC

simulations have reached such a limit as our distributions can be seen doubling and quadrupling

with the box length.

Fig. 7 shows the intensity-weighted width distribution for the different runs, defined as

cE(w)w/∆w, analogous to the length distribution, with w representing width. MHD runs 0, I,

and II show maximum intensity in the range from w ≈ 7di to w ≈ 40di. The distribution falls off

steeply below this range. The fall-off depends on the resolution, with the higher resolution runs

showing the fall-off at smaller widths. The distributions do not extend to w = 170di which is the
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Figure 7: (color online) Distributions of current sheet widths for different simulation runs. (a) is
for MHD and (b) is for VPIC.

maximum possible width in the transverse direction (considering the diagonal in the transverse

direction which is 120
√
2di). Doubling the box size in run III just shifts the distribution given

by run II by a factor of two, just as was seen for the length distribution in Fig. 6(a). The width

distributions for VPIC runs in Fig. 7(b) agree well with MHD. Runs 0, I, and II show more peaked

distributions compared to MHD, with the most intense sheets having a width around 10di. The

distribution falls off around this value, implying a well-defined range for current sheet widths. Un-

like in MHD, the fall-off at lower widths does not vary with the resolution. Compared to these

three runs, run III with double box length shows widths that are larger but not exactly double.
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It also has a broader distribution of the most intense widths ranging from w ≈ 20di to w ≈ 70di.

This broader distribution is similar to the distribution in MHD run III. Going back to Fig. 6, we

observe that the MHD and VPIC length distributions also match better for run III compared to

runs 0, I, and II. We recall that the inertial range spectra between MHD and VPIC also agreed

closely for runs III and IV in Fig. 3. We now see that the current sheet distributions also agree

closely for these runs, giving more confidence that the VPIC simulations are reaching the MHD

limit. When we double the box length again in run IV, we again see a slight shift of the distribution

to the right, but it is not by a factor of two. Although the distribution extends up to w = 100di, it

falls off above w ≈ 70di. Thus, the widths appear to scale with the driving scale, but the scaling is

weaker than linear. One possibility is that the current sheets might be breaking up due to tearing

instability, limiting their width. This will need further investigation.

Fig. 8 plots the intensity weighted thicknesses (ξ, the smallest dimension) for all the simula-

tions. Thickness shows very distinct features in both the codes. The distributions are extremely

peaked in both the codes, implying an extremely well-defined thickness for current sheets. MHD

run 0 shows a peak thickness of around 1.5di. Run I shows a peak thickness of around 0.8di which

is half of the run 0 value. This shows that current sheet thickness in our MHD simulations is

entirely dependent on the grid spacing. The grid resolution determines the numerical diffusivity

in our runs and that sets the thickness, so the current sheets become as thin as the grid allows

them to be. This is further seen in run II where the resolution is again doubled and the thickness

reduces further by half to become 0.4di. Run III has the same resolution as run I. Thus, it shows

the same current sheet thickness as run I. In resistive MHD simulations analyzed in Ref. [28] the

dissipation is controlled by specifying an explicit resistivity. In those cases it is found that current

sheet thickness depends on the resistivity, smaller the resistivity, thinner the sheets. Thus, sheet

thickness depends on the dissipation; if it is explicit then it depends on the diffusion coefficient, if

implicit then it depends on the grid spacing. In VPIC, the sheets thickness is remarkably converged

in all the cases. Apart from the statistical fluctuations, the distributions show a peak close to 1di.

This is irrespective of change in resolution (runs 0, I, and II) or change in box size (runs II, III,
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Figure 8: (color online) Distributions of current sheet thickness for different simulation runs. (a)
is for MHD and (b) is for VPIC.

and IV). This indicates that VPIC is simulating the physical mechanism limiting the current sheet

thickness, and our resolution is enough to capture it. Moreover, the most intense current sheets

show a thickness of 1di. This proves that skin-depth is the limiting factor determining current sheet

thickness.

V. Summary and Discussion

Numerical simulations of MHD turbulence are extremely valuable in understanding several

laboratory, space, and astrophysical systems. To understand dissipation of MHD turbulence better
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simulation capabilities are needed. At scales smaller than the ion gyro-radius or ion skin-depth, we

expect the MHD framework to breakdown, and hence use of kinetic codes becomes imperative. This

work has attempted to bridge the gap between fluid and kinetic simulations of MHD turbulence. We

found that it is possible to generate MHD turbulence using a fully kinetic code, which reproduces

several features of fluid simulations.

The energy dynamics are remarkably similar in both codes despite the vast difference in the

way they handle dissipation - PLUTO was run in ideal MHD mode with only numerical diffusivity,

whereas VPIC is fully kinetic. This tells us that the idea that small scale turbulence adjusts to

dissipate whatever the rate of energy cascade down from the inertial range is holds. In this paper,

we have started our simulations purely with shear-Alfven waves. There is some conversion into

compressible modes as seen from the formation of density fluctuations. It would be interesting to

see how well the PIC and fluid energy dynamics match for other initial conditions. The rate of

energy decay is very close to E ∼ t−1. This rate of decay is also observed in other MHD simulations

of decaying turbulence with zero magnetic helicity [31], which is the case for our ensemble of shear-

Alfven waves. It would be interesting to see if VPIC is able to reproduce the decay rate of E ∼ t−0.5

for simulations with finite magnetic helicity, and even simulations with high β.

Power spectra have been analyzed for incompressible MHD turbulence in a large number

of studies [32], [33]. In this work, we have investigated spectra from compressible MHD and

particle-in-cell codes. All the simulations show well-converged spectra under a change of resolution.

The decaying turbulence presents its own challenges in analyzing spectra, but they are managed

reasonably by averaging with a time-dependent compensating factor. The MHD simulations show

a spectral slope of k−1.3
⊥ , for all the simulation runs. The smaller box runs of VPIC show a steeper

spectra of k−1.5
⊥ , but they are converged w.r.t. resolution. The slope decreases and arrives at the

MHD value of k−1.3
⊥ for larger box size in VPIC. This shows that provided sufficient separation

of scales between the driving scale and dissipative scale, VPIC is able to reproduce the MHD

inertial range. Typically, MHD turbulent spectra are observed to be between k
−3/2
⊥ and k

−5/3
⊥ .

Our spectra show shallower slope, with reasons not clear. The decaying nature of the turbulence
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plus the compressibility can affect the spectrum. Although our initial condition contains only

shear-Alfven waves which are incompressible, we observe generation of density fluctuations later in

time. This has been observed in other simulations also, in similar parameter regimes, where Alfven

waves interact nonlinearly to produce the compressible fast and slow modes [34], [35]. Preliminary

simulations of forced turbulence show the k−1.5
⊥ slope. The VPIC and MHD spectra differ at wave

numbers k⊥di & 1.0. The magnetic fluctuations are strongly damped in VPIC compared to MHD.

Making use of collisionless damping rates from the linear Vlasov equation, we estimated the rate

of energy dissipation by kinetic damping. It seems plausible that kinetic damping is dissipating a

significant fraction of the energy in our PIC simulations.

Current sheets have been proposed as the dominant dissipative structures in MHD turbu-

lence [36]. Techniques have been developed to identify such structures and analyze them [28]. We

use such techniques to identify and characterize current sheets. We find sheets which are vastly

elongated in the direction parallel to the mean field. Their lengths range from 100di extending up

to the entire length of the simulation box. The fluid and kinetic codes match well for the length

distributions. The lengths scale linearly with the driving scale of turbulence in both codes. The

widths show a similar behavior as the length scales. The most intense sheets have widths ranging

from 10di upwards, roughly a tenth of their lengths. They show a scaling with the outer driving

scales of the turbulence, however it is weaker than a linear scaling. It is expected that sheets with

a large aspect ratio of width to thickness would be unstable to tearing modes, and this might play

in role in setting the widths of current sheets. Current sheet thickness shows distinctly different

behavior in both the codes. It depends entirely on the grid spacing in our ideal MHD simulations,

in which dissipation is entirely provided by the finite grid resolution. It does not scale with the

driving scale of turbulence. In VPIC, it is very close to the skin-depth, depending neither on res-

olution nor on the driving scale. This implies a fundamental, kinetic mechanism that limits the

thickness of current sheets to skin-depth.

Overall, we have found that with large box sizes and sufficient number of particles, particle-

in-cell code VPIC remarkably reproduces a wide variety of MHD turbulent dynamics in the inertial
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range. Conversely, this work also confirms that MHD describes real turbulence at large scales,

consistent with kinetic simulations using first principles. The important differences due to kinetic

physics begin to show up at the current sheet thickness scale of skin-depth. So VPIC is able

to capture the entire range of dynamics from inertial to dissipative range. This opens up the

possibility of studying the problem in a comprehensive manner. We can look at the large scale

dynamics governing current sheets and also relate it to the microphysics going on at kinetic scales.

This will be helpful in understanding conversion of magnetic and kinetic energy into heat in MHD

turbulence. Heating in our simulations will be studied in detail in a future work.

Appendix

The parallel cell size in all our simulations and the perpendicular cell size in runs 0 and

IV is going above the ∆x = 3.0λDe limit for the finite grid instability. This is calculated using

the relation λDe = (vth/c)de = 0.08de, where λDe is the electron Debye length. The finite grid

instability should exhibit itself as numerical heating of the plasma. To find out how important

the finite-grid instability is in our simulations we do a test of the numerical heating by taking a

small box with 20 × 20 × 20 cells in each direction, introducing the same plasma parameters, but

without the turbulent fluctuations. We let the simulation run for the same amount of time as run

I (in terms of τpe). We then observe how much the plasma heats up. We begin with a cell size of 1

electron Debye length (λDe) in all three directions. Then we degrade the resolution by increasing

the cell size in both directions till we reach our simulation resolution. The percentage of numerical

heating as a fraction of the initial internal energy is shown in Fig. 9. The blue dots have the same

perpendicular resolution as runs I and III. Green dots have same perpendicular resolution as runs

0 and IV. Runs I and III show very little heating (2.2%). Run II has even lesser heating as its

resolution is higher. Runs 0 and IV are our worst resolved simulations and they show a heating of

5.5%. This shows that there is some finite-grid instability led heating going on for our runs, but it

is very weak and should not affect our results in any significant way. It should be pointed out that

the finite-grid instability for PIC codes has not been studied extensively for pair plasmas and also

for different cell sizes in parallel and perpendicular directions. Our simulations seem to suggest
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that for pair plasmas the resolution in parallel direction can be relaxed above ∆l∥ = 3.0λDe.
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Ê
(k

⟂
)
∗k

1.
3

⟂

(a)

t=0.4τA

t=1.0τA

t=1.6τA

t=2.4τA

10-1 100

k⟂di

10-3

10-2

10-1

Ê
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